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Abstract—Autonomous driving poses unique challenges for vehicle
environment perception systems. It is highly desirable that we utilize
existing vehicle-equipped driver-assistant sensors, without hardware
change, to achieve driverless performance. Current product level vehicle
surround view camera module (denoted concisely as SVS) is served as
a panoramic view visual aid tool for low-automation applications. With
proper statistical analysis, the multiple mono-camera information can be
very useful for higher vehicle intelligence without significant hardware
change. In this study, we focus on lane detection and estimation from
a SVS only system. The major difficulty lies in the fact that mono-
cameras of the SVS are non-cooperative and essentially of protractor
nature; this would lead to large uncertainty on object depth information
and incomplete lane observations. We process the highly distorted data
in a multi-stage manner. We first utilize a neural network classifier to
yield labeled lane-relevant objects. The lane marks/edges point clouds
are processed by a truncated Gaussian random field model for the
spatial filtering and a fading memory model for the temporal filtering.
Then we present polynomial fitting scheme and a statistical analysis of
the fitting errors reveals good lane and ego-vehicle orientation cues.
In a parking lot real world study, we show promising lane detection
and estimation performance of significant practical implications for lane
keeping capability in high-automation applications.

Index Terms—lane detection and estimation, surrounding vision,
goodness-of-fit

I. INTRODUCTION

Autonomous driving (AD) poses unique challenges for vehicle per-
ception. The transition from human operator in advanced driver assis-
tance systems (ADAS) to intelligent driverless automation addresses
the necessity of acquiring deeper information from vehicle sensors.
This requires us to not only explore new perception modalities of
automotive sensors but also fully carve for more comprehensive
capability in existing ADAS sensor systems [12][23].

The surround view camera systems (denoted concisely as SVS) is
a widely used ADAS module [1][2]. It, through geometric alignment
and composite synthesis, provides stitched panoramic view of vehicle
surrounding environment and utilizes a pre-defined reference line for
driver-assistant purpose. As shown in Fig. 1, the camera image if
projected to ground coordinates would unavoidably cause significant
distortion due to its protractor nature. The big depth uncertainty could
lead to extreme difficulty in lane detection and estimation [9]. To
overcome such a drawback, cooperative mono-cameras can be used
to form a stereo vision system [7][13] or a LiCam (Lidar+Camera)
incorporating 3-D point information into mono-camera image which
creates super-pixel representation [8]. However, these solutions re-
quire extra hardware/sensor configurations.

In this study, we aim at achieving satisfying AD performance
with minimum hardware change using existing product level SVS
sensing systems. We carry out an image-based ground-coordinate lane

Fig. 1: Image space and ground plane correspondence.

detection and estimation in a multi-stage manner. We first process
raw images based on a neural network classifier, yielding segmented
pixel-wise image semantics. Then the semantic data labelled as lane
marks/edges are selected and projected in 2-D ground coordinates,
which is quantified by a grid representation [5]. We further apply
a spatial filter and a temporal filter for outlying and smoothing
purpose. Through an adaptive polynomial fitting of the filtered data
and a proper statistical analysis on the fitting errors, we reveal that
the processed semantic data contains rich information about lane
shape and ego-vehicle orientation. In a parking lot scenario, we show
promising lane detection and estimation performance of significant
practical feasibility for intelligent lane keeping capability.

Our major contributions in the work lie in following aspects: i) the
data processing is carried out in ground plane (rather than in image
space [9]) and can be naturally integrated into autonomous driving
applications; ii) no map is required as prior information [18][19];
iii) we focus on statistical inference whilst meticulous on real-world
statistical properties of data in each processing stage.

The paper is organized as follows. Section II introduces a work
pipeline for the surround view camera system and its geometric
properties in ground plane. Section III presents the processing details
for the highly distorted semantic data. Section IV presents the data
statistical analysis for lane estimation in a parking lot scenario.
Summaries and conclusions are given in Section V.

II. SURROUND VIEW CAMERA SYSTEM

The automotive SVS assists the driver in parking by allowing top-
down view of the 360 degree vehicle surroundings. A composite view
of the vehicle surroundings is synthesized and reconstructed in real
time as a visual aid tool [1][2].

We will extract more intelligent information for the sensing system.
Fig. 2 shows a work pipeline from SVS raw images to ground plane



Fig. 2: SVS raw image labeling and prospective mapping.

semantic points. In the scene labeling stage, semantic segmentation
is carried out based on a pre-trained GoogLeNet extended by a fully-
connected layer trained on a proprietary data set of common objects
on roads, e.g., vehicles, lane markings and curbs. This yields pixel
wise label for the objects [4]. In the border extraction, the object
edge pixels is selected and associated data is projected into ground
plane (according to an empirical transform matrix). We can form, via
Douglas-Peucker algorithm [15], polygon lines consisting of a list of
labeled connected points.

Fig. 3: SVS semantic contours (white: lane marking; magenta:
sidewalk; gray: obstacle).

Fig. 3 shows the so-called SVS semantic contours, which are highly
distorted in coordinate transform from image space to ground plane:
the edges-associated data are extremely uncertain and any labeling
errors can lead to disastrous results. This barely provides direct cues
for good scene understanding.

III. LANE RECOGNITION AND DETECTION

We must properly quantify the SVS contour uncertainty to facilitate
statistical analysis. To achieve so, we use a grid-based fuzzy logic
scheme to simplify the data geometry representation. Then a spatial
filter and a temporal filter are used as for outlying and smoothing
purpose.

A. Grid Representation

We use only the SVS contour data labeled as lane marking. The
corresponding SVS point clouds, as shown in Fig. 4(a), have two
noticeable statistical properties: i) non-uniform uncertainty according
to geometry and ii) the uncertainty is non-quantifiable with any
known probability density function. We therefore carry out a scan-line
polygon filling [24], as shown in Fig. 4(b), to erase the non-uniformity
for possible uncertainty quantification.

The quantification is implemented based on classic grid mapping
process using inverse measurement model [5][20]. The corresponding
existing evidence are obtained via binary Bayesian filter (BBF) or
Dempster-Shafer fuzzy logic [17][14], based on data accumulated
over a small time window. Fig. 5 shows a result with gray-scale
indicating existing probability.

(a) SVS point cloud (b) Filled polygon

Fig. 4: Scan-line polygon filling.

Fig. 5: Grid based filled polygons (over a small time window).

B. Spatial and Temporal Filtering

Now we can re-account for the non-uniform uncertainty. This is
compensated for based on spatial geometry importance and data up-
to-dateness. Fig. 6 illustrates the spatial filtering using a truncated
Gaussian random field model and the temporal filtering using an
exponential fading model.

Fig. 6: The spatial-temporal filtering for SVS filled polygons.



The spatial filtering is carried out independently for different
vehicle directions (left, right, front and rear). We define xl as the
distance from vehicle to the expected closest lane edge. By shifting xl

value, we can have different processed SVS filled polygons {Ci(k)},
i = 1, 2, ..., nk. For each of the processed filled polygons, we carry
out a boxing fitting [10]. The optimal xl is the one with minimum
area among the fitting boxes.

The temporal filtering is quite straightforward and an exponential
coefficient as fading memory over data sequence is used. The tem-
poral data processing largely alleviate errors from occasional neural
network wrong labeling.

(a) Spatial filtering result (b) Temporal filtering result

Fig. 7: Results from the spatial and temporal filtering.

Fig. 7 shows the result after the spatial and temporal filtering. It
can be seen that we could extract deeper information for decent lane
estimation.

IV. LANE ESTIMATION IN A PARKING LOT STUDY

After the grid representation and the spatial-temporal filtering, the
lane estimation is achieved by an adaptive-order polynomial fitting
with the filtered data.

Starting with fitting order n = 1, we test the following goodness-
of-fit satisfying a specific (say, 95%) probability threshold [21]:
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{eni } , i = 1, 2, ..., Nc is the fitting errors from the filtered data (of
Nc points) and σ̃ is the fitting-error associated standard deviation
(SD)1.

Moreover, we can also have a run-time fitting-error SD as σf =√∑
(eni −ēn)2

Nc−1
, where ēn is the mean of {eni }.

Fig. 8: Lane estimation via polynomial fitting.

we conclude that:

1Considering the fitting errors as one kind of measurement data, the
associated SD can be approximated from a preliminary study.

Fig. 9: Lane prediction in the case of SVS data missing or
insufficient (e.g., turning in a T cross-road).

1). The fitting order indicates the curvature of road: The goodness-
of-fit test is carried out via a chi-square distribution with
approximated measurement SD R̃ [21]. Fig. 8 shows a first order
fitting and a second order fitting results.

2). The run-time fitting-error SD could indicate lane width: the SD
with 2σf (under Gaussian assumption) can be considered as a
reasonable lane width estimation.

3). Difference of the run-time fitting error SDs from the left and
right sides can indicate turning direction of the vehicle: when
the vehicle makes turns, the image distortion on one side will be
bigger than the other and therefore the run-time fitting error SDs.
Similarly, heading direction if comparing the front and back.

4). Lane prediction can be achieved from optimal polynomial fitting:
Fig. 9 shows a short-time prediction performance.

V. SUMMARIES AND CONCLUSIONS

In this study, we aim at using ADAS SVS sensing system to
achieve AD performance with careful handling on data statistical
properties. A multi-stage data processing approach is carried out for
the highly-distorted SVS data. We first use a neural network for
pixel-wise segmentation and labeling. Then we employ grid-based
fuzzy logic to bring uniformity for the SVS contour non-stationary
geometry uncertainties and simplify the corresponding quantification.
We further design a spatial filter and a temporal filter to re-account
for the non-uniformity, alleviating data labeling errors and depth
uncertainty. After these processing, an adaptive polynomial fitting
scheme is used on filtered data over a small time window. A statistical
analysis on the properties of the fitting errors reveals that: i) we can
achieve a good lane estimation on its location and shape; ii) we can
roughly estimate the ego-vehicle orientation in real time; iii) a decent
lane prediction even with incomplete data is also possible.
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